Texture-Based Foam Segmentation and Analysis
نویسندگان
چکیده
A variety of polymers or surfactant mixtures or aeration of a number of liquids could generate mixtures of liquid and foam. Therefore, characterizing the properties of liquid/foam mixtures has important applications in the chemical process industry. The lack of a robust automated method for characterization within limited time and with high accuracy, however, has made this task difficult. In this work, we propose a new method based on image analysis for quantifying the geometric and statistical properties of such liquid/foammixtures using images captured by an optical camera. Themethod can reliably achieve automated segmentation of liquid and foam layers. It can also find the boundaries of individual bubbles in the foam layer. At first, the region of interest, the foam region, is segmented from the input raw image. Then, the foam region is partitioned into two types of subregions, namely, loose foam or dense foam, according to local texture feature analysis. In the next step, to segment bubbles within the foam to obtain quantitative characterization, we apply two image processing algorithms, namely, Canny edge detection and K-means clustering, each specific to a different type of foam (loose or dense). The results show that the proposed automated segmentation and characterization method is robust and applicable to the processing of foam/liquid mixtures under many conditions.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملClassification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کاملA Pixon-based Image Segmentation Method Considering Textural Characteristics of Image
Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...
متن کامل